您现在的位置:主页 > 聚焦 >

期权波动率计算公式

更新时间:2021-12-23 12:55:47

  隐含波动率是制期权市场投资者在进行期权交易时对实际波动率的认识,而且这种认识已反映在期权的定价过程中。从理论上讲,要获得隐含波动率的大小并不困难。由于期权定价模型给出了期权价格与五个基本参数(St,X,r,T-t和σ)之间的定量关系,只要将其中前4个基本参数及期权的实际市场价格作为已知量代入期权定价模型,就可以从中解出惟一的未知量σ,其大小就是隐含波动率。因此,隐含波动率又可以理解为市场实际波动率的预期。

  期权定价模型需要的是在期权有效期内标的资产价格的实际波动率。相对于当期时期而言,它是一个未知量,因此,需要用预测波动率代替之,一般可简单地以历史波动率估计作为预测波动率,但更好的方法是用定量分析与定性分析相结合的方法,以历史波动率作为初始预测值,根据定量资料和新得到的实际价格资料,不断调整修正,确定出波动率。

  你知道Black-Scholes的公式吗里面的N(d1)就是看涨期权的Delta,看跌的就是1-N(d1)。如果知道这个公式的话就可以不用看下面的内容了。下面只是维基百科搬运来的公式而已。

  式子第一行左边的C(S,t)表示看涨期权的价格,两个变量S是标的物价格,t是已经经过的时间(单位年),其他都是常量。Delta的定义就是期权价格对标的物价格的一阶导数,所以右手边对S求一阶偏导,就只剩下N(d1)了。d1的公式也在上面了,把数字带进去就好了。N是标准正态分布的累积分布(需要计算器或者查表)。