近日,中国科学技术大学研究人员利用机器学习方法,全景式地展示了全球地震破裂过程的相似性和多样性,对地震早期预警具有启示意义。
图片来自印度亚洲通讯社
地震是人类社会所面对的重要自然灾害之一。近20年,全球中大地震已造成近100万人伤亡,经济损失不计其数。地震破裂过程多种多样,客观衡量其相似性和差异性,将有助于人们认识地震物理过程,以及对地震震级进行早期预测。
但此前,对于叠加多个地震平均破裂过程的研究,并无法衡量全球地震的差异范围。同时,基于某些破裂特征的统计研究,也无法做到对整个破裂过程的系统比较。
此次,中国科学技术大学研究员李泽峰利用机器学习方法,总结了全球3000多个5.5级以上地震的震源时间函数特征,全景式展示了全球地震破裂过程的相似性和多样性,深化了人们对地震能量释放模式的认识,对地震早期预警具有启示意义。相关成果发表在美国地球物理学会期刊《地球物理研究通讯》。
图片来自美国地球物理学会期刊《地球物理研究通讯》
研究人员利用深度学习中的变分自编码器,对全球3000多个中大型地震的震源时间函数进行二维空间压缩和模型重构,实现全球震源时间函数的通用模型,全景式展现了全球地震矩释放模式和数量分布。
模型表明,中大地震以简单、均匀破裂为主,复杂、不规则破裂较少。该模型还揭示了两类特殊地震的分布规律,即能量释放集中在破裂后期的逃逸模式,以及分多次能量释放的复杂地震。研究中发现,大地震能量释放模式具有弱震级依赖性,对地震早期预警中最终震级的可预测性提供了有益启示。
a为全球地震震源时间函数在变分自编码器隐式空间的分布,b为重构的全球地震破裂模式流形,图片来自中科大
前述研究基于2021年李泽峰团队和哈佛大学合作研究的震源时间函数聚类方法的发展,也是团队近年来致力于将人工智能应用于科学发现的系列研究成果之一。